Revisiting the Sanders-Freiman-Ruzsa Theorem in $\mathbb{F}_p^n$ and its Application to Non-malleable Codes

نویسندگان

  • Divesh Aggarwal
  • Jop Briët
چکیده

Non-malleable codes (NMCs) protect sensitive data against degrees of corruption that prohibit error detection, ensuring instead that a corrupted codeword decodes correctly or to something that bears little relation to the original message. The split-state model, in which codewords consist of two blocks, considers adversaries who tamper with either block arbitrarily but independently of the other. The simplest construction in this model, due to Aggarwal, Dodis, and Lovett (STOC'14), was shown to give NMCs sending k-bit messages to O(k 7)-bit codewords. It is conjectured, however, that the construction allows linear-length codewords. Towards resolving this conjecture, we show that the construction allows for code-length O(k 5). This is achieved by analysing a special case of Sanders's Bogolyubov-Ruzsa theorem for general Abelian groups. Closely following the excellent exposition of this result for the group F n 2 by Lovett, we expose its dependence on p for the group F n p , where p is a prime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REVISITING THE SANDERS-FREIMAN-RUZSA THEOREM IN Fp AND ITS APPLICATION TO NON-MALLEABLE CODES

Non-malleable codes (NMCs) protect sensitive data against degrees of corruption that prohibit error detection, ensuring instead that a corrupted codeword decodes correctly or to something that bears little relation to the original message. The split-state model, in which codewords consist of two blocks, considers adversaries who tamper with either block arbitrarily but independently of the othe...

متن کامل

$(1-2u^2)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$

Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^2)$-constacyclic codes over the ring $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$, where $u^3=u$. We describe generator polynomials of this kind of codes and investigate the structural properties of these codes by a decomposition theorem.

متن کامل

$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$

Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.

متن کامل

Trace Codes with Few Weights over $\mathbb{F}_p+u\mathbb{F}_p$

We construct an infinite family of two-Lee-weight and three-Lee-weight codes over the chain ring Fp+uFp. They have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using Gauss sums. Then by using a linear Gray map, we obtain an infinite family of abelian codes with few weights over Fp. In particular, we obtain an infinite family of two-weight codes which me...

متن کامل

An Exposition of Sanders' Quasi-Polynomial Freiman-Ruzsa Theorem

The polynomial Freiman-Ruzsa conjecture is one of the most important conjectures in additive combinatorics. It asserts that one can switch between combinatorial and algebraic notions of approximate subgroups with only a polynomial loss in the underlying parameters. This conjecture has also found several applications in theoretical computer science. Recently, Tom Sanders proved a weaker version ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.02788  شماره 

صفحات  -

تاریخ انتشار 2016